Q1. 6 (a) (i) (iii) curve is same shape or same half-life, not affected by temperature, [2] (b) (i) 134...... B1 [1] (iii) α-particle shown as ⁴He or as ⁴α......B1 nucleon number of Po shown as 216 B1 proton number of Po shown as 84...... B1 [3] **Q2**. 8 position shown as A = 227, Z = 91**B1** [1] (a) (b) Pu shown as A = 243, Z = 94**B1** D shown with $A = A_{Pu}$ and with $Z = (Z_{Pu} + 1)$ **B1** [2] Q3. (a) nucleus emits M1 α- or β- particles and/or γ-rays A1 [2] (b) decay unaffected by environmental changes M1 such as temperature, pressure etc. (one e.g. is sufficient) [2] A1 (c) constant probability of decay (per unit time) of a nucleus **B1** cannot predict which particular nucleus will decay next **B1** [2] Q4. (a) β(-decay) **B1** [1] (b) y(-decay) **B1** either any two of Z, N and A do not change it is loss of energy only or it is an electromagnetic wave **B1** [2] Allow 'α(-decay) as change of 4 in the nucleon number cannot be shown on the diagram' (B2) Do not give credit for a 'bald' α(-decay)

Q5.

7	(a)	α-particle: either helium nucleus or contains 2 protons + 2 neutrons		
		or ⁴ ₂ He	B1	
		β-particle: either electron or _10e	B1	
		α speed < β speed (1) α discrete values of speed/energy, β continuous spectrum (1) either α ionising power >> β ionising power or α range << β range (1) α positive, β negative (only if first two B marks not scored) (1) α mass > β mass (only if first two B marks not scored) (1) (any two sensible pairs of statements relevant to differences, – do not allow statements relevant to only α or β , 1 each, max 2)	B2	[4]
	(b)	(i) $^{236}_{92}U \rightarrow ^{232}_{90}Th$	М1	
		+ ⁴ ₂ He	A1	[2]
		 (ii) 1. correct position for U at Z = 92, N = 145 2. correct position for Np relative to U i.e. Z + 1 and N - 1 	B1 B1	[2]
Q6.				
8	s (rate of decay / activity / decay (of nucleus) is not affected by external factors / environments and surroundings		[2]
	(b) ((i) gamma/y B1		[1]
	(i	ii) alpha / α B1		[1]
	(ii	ii) gamma/y B1		[1]
	(iv	v) beta / β B1		[1]

Q7.

7		(a)				s with same proton number/atomic numbers contain different numbers of neutrons/different atomic mass	B1 B1	[2]
		(b)	(i)	92			A1	[1]
			(ii)	14	6.		A1	[1]
		(c)	(i)	ma	ISS = =	= 238 × 1.66 × 10 ⁻²⁷ 3.95 × 10 ⁻²⁵ kg	C1 A1	[2]
			(ii)			$a = \frac{4}{3} \pi \times (8.9 \times 10^{-15})^3$ (= 2.95 × 10 ⁻⁴²)	C1	
				de	nsity	$v = (3.95 \times 10^{-25})/(2.95 \times 10^{-42})$ = 1.3 × 10 ¹⁷ kg m ⁻³	A1	[2]
		(d)	eith	ern	iucle	ntains most of mass of atomear diameter/volume very much less than that of atom		
			or	ato	m is	s mostly (empty) space	В1	[2]
Q8.								
	7	(a) (i) e		helium <u>nucleus</u> contains 2 protons and 2 neutrons B1		[1]
			(i	S	peed	ange is a few cm in air/sheet of <u>thin</u> paper d up to 0.1 c		
				р	ositi	es dense ionisation in air vely charged or deflected in magnetic or electric fields lawo, 1 each to max 2)		[2]
					15			5 B
		(b) () 4 2	α	B1		
				e	ither	'lp or lH		[2]
			(i	i) 1	ir	nitially, α -particle must have some kinetic energy		[1]
			(i) 2	1	.1 MeV = $1.1 \times 1.6 \times 10^{-13} = 1.76 \times 10^{-13} \text{ J}$		
					E	$T_{K} = \frac{1}{2}mv^{2}$ C1 $.76 \times 10^{-13} = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^{2}$ C1		
					1	$.76 \times 10^{-13} = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$		[41
					u	$r = 7.3 \times 10^6 \text{ m s}^{-1}$		[4]

Q9.

7	(a)	(i)	either helium nucleus or particle containing two protons and two neutrons	В1	[1]
		(ii)	allow any value between 1 cm and 10 cm	В1	[1]
	(b)	(i)	energy = $(8.5 \times 10^{-13})/(1.6 \times 10^{-13})$ = 5.3 MeV	M1 A0	[1]
		(ii)	number = $(5.3 \times 10^6)/31$ = 1.7×10^5 (allow 2 s.f. only)	C1 A1	[2]
		(iii)	number per unit length = (1.7×10^5) /(a)(ii) correct numerical value correct unit	A1 B1	[2]
Q10.					
7	(a) (i)	2 protons and 2 neutrons	B1	[1]
		(ii)	e.g. positively charged 2e mass 4u constant energy absorbed by thin paper or few cm of air (3 cm → 8 cm) (not low penetration) highly ionizing deflected in electric/magnetic fields (One mark for each property, max 2)	B2	[2]
	(b		ass-energy is conserved fference in mass 'changed' into a form of energy	B1 B1	
		er	nergy in the form of kinetic energy of the products / γ-radiation notons / e.m. radiation	B1	[3]
Q11.					
7	(a	Υ	f = 1 and X = 0 = 2 = 55	A1 A1 A1	[1] [1] [1]
	(b	eı	cplanation in terms of mass – energy conservation nergy released as gamma or photons or kinetic energy of products or m radiation	B1 B1	[2]

Q12.

	7	(a	ac	in paper reduces count rate hence α ldition of 1cm of aluminium causes little more count rate reduction hence only her radiation is γ	B1	[2]	
		(b	lo	agnetic field perpendicular to direction of radiation ok for a count rate in expected direction / area if there were negatively larged radiation present. If no count rate recorded then β not present.	B1 B1	[2]	
Q13	3.						
7				majority/most went straight through ere deviated by small angles	31		
				, , , , , , , , , , , , , , , , , , , ,	31 31	[3]	
			mas	s and charge concentrated in (very small) nucleus	31 31 31	[3]	
Q14	4.						
7	7	(a)	(i)	W = 206 and $X = 82Y = 4 and Z = 2$	A1 A1		
			(ii)	mass-energy is conserved mass on rhs is less because energy is released	B1 B1		
		(b)		affected by external conditions/factors/environment	В1	[1]	

Q15.

7	(a)	(i)	nucleus contains 92 protons nucleus contains 143 neutrons (missing 'nucleus' 1/2) outside / around nucleus 92 electrons most of atom is empty space / mass concentrated in nucleus total charge is zero diameter of atom ~ 10 ⁻¹⁰ m or size of nucleus ~ 10 ⁻¹⁵ m	B1 B1 (B1) (B1) (B1) (B1)	
		(ii)	any two of (B1) marks nucleus has same number / 92 protons	B1	[4]
		(,	nuclei have 143 and 146 neutrons (missing 'nucleus' 1/2)	B1	[2]
	(b)	(i)	Y = 35 Z = 85	A1 A1	[2]
		(ii)	mass-energy is conserved in the reaction	В1	
			mass on rhs of reaction is less so energy is released explained in terms of $E = mc^2$	В1	[2]
Q16					
8	(a)		shows nucleon number as 220 shows proton number as 87		[2]
	(b)		shows products as 4_2 He OR ${}^4_2\alpha$ and ${}^{216}_{85}$ At(allow e.c.f. from (a))		[2]
Q17					
6	(a)	(i)	26 protonsB1		
		(ii)	30 neutrons B1	[2]	
	(b)	(i)	mass = 56 x 1.66 x 10 ⁻²⁷		
		(ii)	density = mass/volume where volume = $4/3 \times \pi \times r^3$	[4]	
	(c)		nucleus occupies only very small fraction of volume of atom or 'lot of empty space inside atom'		
			any further good physics e.g. nuclear material is very dense B1	[2]	

Q18.

7	(a) (i	i) n	ucleus is small	M1		
		in	comparison to	o size of atom A1	[2]	
	(1	ii) n	ucleus is mass	sive/heavy/dense B1		
		a	nd charged	(allow to be scored in (i) or (ii)) B1	[2]	
	(b) (i	i) s	ymmetrical pat	th and deviation correct w.r.t. position of nucleus		
		de	eviation less th	nan in path AB B1		
	(1	ii) d	eviation > 90°	and in correct direction B1	[3]	
Q19.						
7	(a)	mo	st α-particles c	leviated through small angles	В1	
		100 C 100 C	cept 'undeviate α-particles de	ed') viated through angles greater than 90°	В1	[2
	(b)	(i)	allow 10 ⁻⁹ m	→ 10 ⁻¹¹ m	B1	[1]
		(ii)		\rightarrow 10 ⁻¹⁵ m out of range but (ii) = 10 ⁻⁴ (i), then allow 1 mark) wrong units but (ii) = 10 ⁻⁴ (i), then allow 1 mark)	В1	[1
Q20.						
8	(a)	per	unit time / in a	ant probability of decay given time A cannot predict which nucleus will decay next')		[2]
	(b)	(i)	count rate / ad	ctivity decreases B	1	[1]
		(ii)	count rate fluo	ctuates / is not smooth B	1	[1]
	(c)	eith or		curves are similar / same cate same half-life B	1	[1]

Q21.

7	(a)	deviation shown correctly	B1	[1]
	(b)	smaller deviation (not zero deviation)acceptable path wrt position of N		[2
	(c)	the nucleus is (very) small in comparison to the atom (special case: 'atom is mostly empty space' scores 1 mark)		[2]
	(d)	deviation depends on charge on the nucleus / N / electrostatic repulsionsame charge so no change in deviation		[2
			[Tota	al: 7
Q22.				
7	(a)	either forms of same element or atoms / nuclei with same number of protons atoms / nuclei contain different numbers of neutrons (use of 'element' rather than atoms / nuclei scores max 1 mark)		[2]
	(b)	(i) decay is not affected by environmental factors	B1	[1]
		(ii) either time of decay (of a nucleus) cannot be predicted or nucleus has constant probability in a given time	B1	[1]
	(c)	¹⁸⁵ ₇₅ Re		[2]
Q23.			liota	i. Oj
7	(a)	either different forms of same element or nuclei have same number of protons different numbers of neutrons (in the nucleus)	M1 A1	[2]
	(b)	(i) proton number conserved nucleon number conserved mass-energy conserved	B1 B1 B1	[3]
		(ii) 1. Z = 36 2. x = 3	A1 A1	[1] [1]

Q24.

7	(a)	(i)	\underline{most} α -particles were deviated through small angles (allow 1 mark for 'straight through' / undeviated)	B2	[2]
		(ii)	small fraction of $\alpha\text{-particles}$ deviated through large angles greater than 90° (allow rebound back)	M1 A1	[2]
	(b)	e.g	β-particles have a range of energies β-particles deviated by (orbital) electrons β-particle has (very) small mass (any two sensible suggestions, 1 each, max 2)	B2	[2]
		Do	not allow β -particles have negative charge or β -particles have high speed		
Q25					
9	(a		ucleus emits α -particles or β -particles and/or γ -radiation form a different / more stable nucleus	B1 B1	[2]
	(b) (i)	fluctuations in count rate (not 'count rate is not constant')	В1	[1]
		(ii)	no effect	В1	[1]
		(iii)	if the source is an α-emitter	В1	
			either α -particles stopped within source (and gain electrons) or α -particles are helium <u>nuclei</u>	В1	[2]
			allow 1/2 for 'parent nucleus gives off radiation to form daughter nucleus'		
Q26					
	7	VI 4 3 5 5 5	nuclei with the same number of protons and a different number of neutrons	B1 B1	[2]
		(b)	(i) (mass + energy) (taken together) is conserved momentum is conserved one point required max. 1	(B1) (B1) B1	[1]
		((ii) $a = 1$ and $b = 0$ x = 56 y = 92	B1 B1 B1	[3]
			proton number = 90 nucleon number = 235	B1 B1	[2]

Q27.

7	(a)	(i)	external	factors		ecay / activity is the s factors or two names are applied		В1	[1]
		(ii)				e / count rate / rate ariations / fluctuations	of decay / activity /	В1	[1]
	(b)								
			proper	ty	α-particle	β-particle	γ-radiation		
			charge	е	(+)2e	-е	0		
			mass		4u	9.11 × 10 ⁻³¹ kg	0		
			speed	i	0.01 to 0.1 c	up to 0.99 c	С		
		one	mark for	each co	rrect line			В3	[3]
	(c)		ision with ises ionisa			ectron is removed		B1 B1	[2]
Q28.									
6	(a) (i)	greater greater		on field / force on α-p	particle		M0 A1	[1]
		(ii)	greater greater		on field / force on α-p	particle		M0 A1	[1]
	(b) (i)	either or	becaus β less (ons in opposite di e oppositely charq deflection maller charge			M1 A1 (M1) (A1)	[2]
		(ii)	α small becaus	er defled e larger				M1 A1	[2]
		(iii)	β less o	deflection	because higher s	speed		B1	[1]
	(c			er (2 × 1	$F = Eq$ or $a = \frac{.6 \times 10^{-19}}{10^{-19}} \times \frac{(9.11)^{-19}}{10^{-19}}$	× 10 ⁻³¹)		C1	
			or		10 ⁻¹⁹) × 4 × (1.67 1 / 2000 u] / [e × 4			C1	
		ra	tio = 1 /40	000 or	2.5 × 10 ^{−4} or 2	2.7 × 10 ⁻⁴		A1	[3]

Q29.

6	(a)		protons in the nucleus and 92 electrons around nucleus 3 neutrons (in the nucleus)	B1 B1	[2]
	(b)	(i)	α -particle travels short distance in air	В1	[1]
		(ii)	very small proportion in backwards direction / large angles majority pass through with no /small deflections either most of mass is in very small volume (nucleus) and is charged or most of empty space	B1 B1 f atom B1	is [3]
	(c)	n/	$t = (1.5 \times 10^{-12}) / (2 \times 1.6 \times 10^{-19})$ $t = 4.7 \times 10^{6} \text{ s}^{-1}$	C1 C1 A1	[3]
Q30.					
7	(a)	³He	e + ³ He → ⁴ He + 2 ¹ p + Q		
	-	Ān	umbers correct (4 and 1) umbers correct (2 and 1)	B1 B1	[2]
	(b)	the	h <u>nuclei</u> have 2 protons two isotopes have 1 neutron and two neutrons ow 1 for 'same number of protons but different number of neutrons']	B1 B1	[2]
	(c)	ene	ton number and neutron number ergy – mass mentum	B1 B1 B1	[2]
	(d)	(i)	γ radiation	В1	[1]
		(ii)	product(s) must have kinetic energy	В1	[1]
	(e)	60	8MeV = $13.8 \times 1.6 \times 10^{-19} \times 10^{6}$ (= 2.208×10^{-12}) = $n \times 13.8 \times 1.6 \times 10^{-13}$ $2.7(2) \times 10^{13}$ s ⁻¹	C1 A1	[2]

Q31.

6	(a)	(i)	electron	B1	[1]
		(ii)	any two: can be deflected by electric and magnetic fields or negatively charged / absorbed by few $(1-4)$ mm of aluminum / 0.5 to 2 m or metres for range in air / speed up to $0.99c$ / range of speeds / energies	B2	[2]
		(iii)	decay occurs and cannot be affected by external / environmental factors or two stated factors such as chemical / pressure / temperature / humidity	В1	[1]
	(b)	1 3 4	and 0 for superscript numbers	В1	
	(D)		and –1 for subscript numbers	B1	[2]
			DE DESCRIPTION OF THE PROPERTY		10000
	(c)	en	ergy = $5.7 \times 10^3 \times 1.6 \times 10^{-19}$ (= 9.12×10^{-16} J)	C1	
		. 2	$2 \times 9.12 \times 10^{-16}$	04	
		V	$=\frac{2\times9.12\times10^{-16}}{9.11\times10^{-31}}$	C1	
			1 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	Walke	12225
		V	$= 4.5 \times 10^7 \mathrm{ms^{-1}}$	A1	[3]
	(d) both have 1 proton and 1 electron 1 neutron in hydrogen-2 and 2 neutrons in hydrogen-3 (special case: for one mark 'same number of protons / atomic number different number of neutrons')				
Q32.					
7	(a)	(i)	the direction of the fields is the same OR fields are uniform OR constant electric field strength OR $E=V/d$ with symbols explained	В1	[1]
		an	reduce p.d. across plates	В1	
			increase separation of plates	B1	[2]
	Ċ	iii)	α opposite charge to β (as deflection in opposite direction)	В1	
			β has a range of velocities OR energies (as different deflections) and α all have same velocity OR energy (as constant deflection)	В1	
			α are more massive (as deflection is less for greater field strength)	B1	[3]
	(b)		= 234 and X = 90 4 and Z = 2	B1 B1	[2]
	(c)	A =	32 and $B = 16$ and $C = 0$ and $D = -1$	В1	[1]